Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
2.
Pharmaceutics ; 14(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123790

ABSTRACT

Due to the high prevalence of infectious diseases and their concurrent outbreaks, there is a high interest in developing novel materials with antimicrobial properties. Antibacterial and antiviral properties of a range of metal-based nanoparticles (NPs) are a promising means to fight airborne diseases caused by viruses and bacteria. The aim of this study was to test antimicrobial metals and metal-based nanoparticles efficacy against three viruses, namely influenza A virus (H1N1; A/WSN/1933) and coronaviruses TGEV and SARS-CoV-2; and two bacteria, Escherichia coli and Staphylococcus aureus. The efficacy of ZnO, CuO, and Ag NPs and their respective metal salts, i.e., ZnSO4, CuSO4, and AgNO3, was evaluated in suspensions, and the compounds with the highest antiviral efficacy were chosen for incorporation into fibers of cellulose acetate (CA), using electrospinning to produce filter materials for face masks. Among the tested compounds, CuSO4 demonstrated the highest efficacy against influenza A virus and SARS-CoV-2 (1 h IC50 1.395 mg/L and 0.45 mg/L, respectively), followed by Zn salt and Ag salt. Therefore, Cu compounds were selected for incorporation into CA fibers to produce antiviral and antibacterial filter materials for face masks. CA fibers comprising CuSO4 decreased SARS-CoV-2 titer by 0.38 logarithms and influenza A virus titer by 1.08 logarithms after 5 min of contact; after 1 h of contact, SARS-COV-2 virus was completely inactivated. Developed CuO- and CuSO4-based filter materials also efficiently inactivated the bacteria Escherichia coli and Staphylococcus aureus. The metal NPs and respective metal salts were potent antibacterial and antiviral compounds that were successfully incorporated into the filter materials of face masks. New antibacterial and antiviral materials developed and characterized in this study are crucial in the context of the ongoing SARS-CoV-2 pandemic and beyond.

3.
PLoS One ; 17(6): e0268806, 2022.
Article in English | MEDLINE | ID: covidwho-1987134

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cattle , Colostrum/metabolism , Female , Humans , Pregnancy , Spike Glycoprotein, Coronavirus
4.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572663

ABSTRACT

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Cell Line , Drug Synergism , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Metabolome/drug effects , Organoids , RNA, Viral/biosynthesis , RNA, Viral/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Replication/drug effects , Viruses/classification , Viruses/drug effects
5.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: covidwho-1430555

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
6.
Nat Commun ; 12(1): 5113, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1373413

ABSTRACT

SARS-CoV-2 is a major threat to global health. Here, we investigate the RNA structure and RNA-RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 in cells using Illumina and Nanopore platforms. We identify twelve potentially functional structural elements within the SARS-CoV-2 genome, observe that subgenomic RNAs can form different structures, and that WT and Δ382 virus genomes fold differently. Proximity ligation sequencing identify hundreds of RNA-RNA interactions within the virus genome and between the virus and host RNAs. SARS-CoV-2 genome binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites are enriched in viral untranslated regions, associated with increased virus pair-wise interactions, and are decreased in host mRNAs upon virus infection, suggesting that the virus sequesters methylation machinery from host RNAs towards its genome. These studies deepen our understanding of the molecular and cellular basis of SARS-CoV-2 pathogenicity and provide a platform for targeted therapy.


Subject(s)
COVID-19/virology , Host Microbial Interactions , RNA, Viral/metabolism , RNA/metabolism , SARS-CoV-2/physiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/physiopathology , DNA Methylation , Genome, Viral , Humans , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
7.
PLoS Biol ; 19(2): e3001091, 2021 02.
Article in English | MEDLINE | ID: covidwho-1102372

ABSTRACT

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Subject(s)
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/virology , Reverse Genetics , SARS-CoV-2/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Codon , Humans , Hydrazones/pharmacology , Mice , Morpholines/pharmacology , Open Reading Frames , Plasmids/genetics , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL